
Poster: Defining Accountability using Causation and Evidence

Anupam Datta
Carnegie Mellon University
Email: danupam@cmu.edu

Dilsun Kaynar
Carnegie Mellon University

Email: dilsunk@cmu.edu

Divya Sharma
Carnegie Mellon University

Email: divyasharma@cmu.edu

Arunesh Sinha
Carnegie Mellon University
Email: aruneshs@cmu.edu

I. INTRODUCTION

Accountability mechanisms complement preventive se-
curity and privacy mechanisms by detecting policy vio-
lations after they occur, identifying agents to blame for
violations, and punishing the violators. The importance of
accountability has been recognized in a wide range of areas
in security and privacy including cryptographic protocols
(e.g., contract-signing [1], auctions, voting [8], anonymity
protocols including electronic cash and group signatures),
computer systems (e.g., using audit logs for access control
systems [9]), copyright protection [12], and privacy protec-
tion on the Web, healthcare, financial and other sectors [2],
[12], [4], [3].

In this work, we seek to develop a definition of account-
ability that provides a semantic basis for identifying agents
to blame for a policy violation. An important desideratum for
this definition is that it be general, i.e., applicable to a broad
set of application domains including the ones mentioned
above. We plan to explore the possibility of algorithmically
checking whether a given mechanism satisfies this defini-
tion and to use the definition to guide the design of new
accountability mechanisms. Finally, we plan to examine the
relationships between our definition and prior work on blame
assignment (e.g., [1], [8], [7]).

In this poster, we report on progress towards such a
definition. Our view is that an agent should be blamed for a
violation on an execution if that agent were at fault and the
agent’s actions caused the violation. We formalize fault as
deviations from expected behavior (e.g., not following the
program that an honest participant in a cryptographic proto-
col is expected to follow or not discharging the responsibil-
ities in an enterprise workflow). We formalize cause using
ideas from counterfactual definitions of actual causation [6],
[11], [10], [5], [13]. Since these definitions of causation
are not properties of single executions, our definition of
accountability is also not a trace property in contrast to some
prior definitions in the literature [1], [8]. Also, in contrast to
the prior work on causation using structural equations [11],
[6], our definition is formalized using a model that explicitly
captures the execution semantics of concurrent multi-agent
systems. The level of abstraction of our model is thus closer
to models for security protocols and enterprise workflows.
Furthermore, while actual causation has been an extremely

difficult concept to formalize in its full generality, we believe
that by focusing on the restricted class of security and
privacy mechanisms, we have a better chance of overcoming
the various difficulties that this line of work has faced over
the years.

II. MODEL

Our formal model captures multiple interacting agents
who perform actions—either following the expected be-
havior or deviating from it. Since linking actions to their
performers is important for blame assignment, we need a
formalism that makes explicit which agent has performed
any given action. Among several formalisms that support this
feature, we choose to work with Causal Concurrent Game
Structures—a restricted class of Concurrent Game Structures
(CGS) that we define, and a temporal logic supported by
CGS because (i) it allows us to model the actions of
multiple interacting agents explicitly (ii) the generality of
these structures enables their use as a model for expressive
logics (iii) use of these general structures allow integration
of our work on blame assignment with our prior work on
detecting policy violations [3]. We model an execution of
the system (as recorded, for example, on an audit log) as a
computation in the concurrent game structure.

III. DEFINITIONS

We hold an agent accountable for a violation, if the agent
is at fault and the agent’s action is determined to be part of
a sequence of actions that is a cause of the violation.

In order to counterfactually reason whether a sequence
of actions is a cause of a violation, we check whether the
sequence leads to the violation and if it is the ‘minimal’
sequence that is sufficient for the violation. For testing non-
redundancy of a sequence S, we test whether S − [a] is
sufficient for the violation where a represents an action in
the sequence S. We repeat the test for every action a in
sequence S, in order to establish the necessity of the action
a for the sequence S. In this manner, we obtain a sequence
of actions, which is sufficient to cause the violation, and
each of the elements in the sequence is non-redundant for
the sequence. For a computation α in the model, we define
~Pα to be the sequence of actions for the states in α (modeled
as a sequence of propositions corresponding to a sequence
of states α in the CGS).



Further, our notion of accountability is based on evi-
dence in an audit log: we cannot establish accountability
of an agent by considering possible behaviors that have not
occurred in reality. Therefore, we identify those behaviors
(modeled as computations in CGS) that occur on the log by
only considering those actions as potential causes that occur
on the log. We use these concepts to define cause:
Sketch of Definition of Cause: Let M denote a concur-
rent game structure, φ be a logic formula (representing a
violation), and α be a computation of M such that α |= φ
(representing a violation). We say that a sequence of actions
~Pβ is a cause of φ on α, if Property 1 and Property 2 hold:

1) (Sufficiency) The sequence of states in β is a subse-
quence of the states on the log α and there exists a
computation α′ of the modelM such that α′ |= φ and
~Pβ = ~Pα′ .

2) (Non-redundancy) If we consider a proper subse-
quence ~Pβ′ of actions in ~Pβ , either the corresponding
computation β′ /∈M or β′ |= ¬φ.

The definition of cause consists of two properties. Prop-
erty 1 captures the sufficiency condition that the sequence
of actions denoted by β leads to a violation. Property 2
ensures that each of the actions in the sequence β are non-
redundant, i.e., each of the actions is necessary for the
sufficient sequence β found in Property 1. The sequence
of actions ~Pβ could contain a single action, in which case
the action is a cause of the violation. The sequence of
actions ~Pβ could contain multiple actions, in which case
each of the constituent actions would jointly be the cause of
the violation. Additionally, there could be several different
sequences of actions that satisfy the definition, in which
case we would obtain independent causes of the violation.
Combining this definition of cause with the notion of fault,
we define accountability:
Sketch of Definition of Accountability: Given a model M
and a violation φ, let α be a computation of M such that
α |= φ. If an agent A is at fault, and the action a by the agent
A is part of a sequence of actions ~Pβ which is determined
to be a cause of violation φ, then A is accountable for φ.

If an agent A is at fault, and the action a by the agent A
is the only action in a sequence of actions ~Pβ determined
to be a cause of violation φ, then we hold A individually
accountable for φ. If a sequence of actions ~Pβ which is
determined to be a cause of violation φ contains multiple
actions and a subset of at least two agents controlling those
actions are at fault, then that subset of agents is jointly
accountable for φ. If several sequences of actions are found
to be causes, then the corresponding sets of accountable
agents are independently accountable for the violation.

REFERENCES

[1] M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turu-
ani, “Compositional analysis of contract-signing protocols,”
Theor. Comput. Sci., vol. 367, no. 1-2, pp. 33–56, 2006.

[2] A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram, “Privacy
and utility in business processes,” in CSF, 2007, pp. 279–294.

[3] A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia,
D. Kaynar, and A. Sinha, “Understanding and protecting
privacy: formal semantics and principled audit mechanisms,”
in Proceedings of the 7th international conference on Infor-
mation Systems Security, ser. ICISS’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 1–27.

[4] J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Towards a
formal model of accountability,” in Proceedings of the 2011
workshop on New security paradigms workshop, ser. NSPW
’11. New York, NY, USA: ACM, 2011, pp. 45–56.

[5] J. Y. Halpern, “Defaults and Normality in Causal Structures,”
Artificial Intelligence, vol. 30, pp. 198–208, 2008. [Online].
Available: http://arxiv.org/abs/0806.2140

[6] J. Y. Halpern and J. Pearl, “Causes and explanations: a
structural-model approach: part i: causes,” in Proceedings
of the Seventeenth conference on Uncertainty in artificial
intelligence, ser. UAI’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, pp. 194–202.

[7] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards
a theory of accountability and audit,” in ESORICS, 2009, pp.
152–167.

[8] R. Küsters, T. Truderung, and A. Vogt, “Accountabiliy: Def-
inition and Relationship to Verifiability,” in Proceedings of
the 17th ACM Conference on Computer and Communications
Security (CCS 2010). ACM Press, 2010, pp. 526–535.

[9] B. Lampson, “Computer security in the real world,” Com-
puter, vol. 37, no. 6, pp. 37 – 46, june 2004.

[10] J. L. Mackie, “Causes and Conditions,” American Philosoph-
ical Quarterly, vol. 2, no. 4, pp. 245–264, 1965.

[11] J. Pearl, Causality: models, reasoning, and inference. New
York, NY, USA: Cambridge University Press, 2000.

[12] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum,
J. Hendler, and G. J. Sussman, “Information accountability,”
Commun. ACM, vol. 51, no. 6, pp. 82–87, Jun. 2008.

[13] R. Wright, “Causation in tort law,” California Law Review
73, pp. 1735–1828, 1985.

2


